怎样做网站推,品牌设计理念,网络推广方案的参考文献,购物网站 建设vLLM 是一款专为大语言模型推理加速而设计的框架#xff0c;实现了 KV 缓存内存几乎零浪费#xff0c;解决了内存管理瓶颈问题。
更多 vLLM 中文文档及教程可访问 →vllm.hyper.ai/
*在线运行 vLLM 入门教程#xff1a;零基础分步指南
源码 examples/offline_inference/p…vLLM 是一款专为大语言模型推理加速而设计的框架实现了 KV 缓存内存几乎零浪费解决了内存管理瓶颈问题。更多 vLLM 中文文档及教程可访问 →vllm.hyper.ai/*在线运行 vLLM 入门教程零基础分步指南源码 examples/offline_inference/prithvi_geospatial_mae.py# SPDX-License-Identifier: Apache-2.0 这是一个演示脚本显示如何使用 带有 vLLM 的 PrithviGeospatialMAE 模型 该脚本基于: https://huggingface.co/ibm-nasa-geospatial/prithvi-eo-2.0-300m-tl-sen1floods11/blob/main/main/inference.py# noqa 目标模型权重: https://huggingface.co/ibm-nasa-geospatial/prithvi-eo-2.0-300m-tl-sen1floods11/resolve/main/main/prithvi-eo-eo-eo-eo-eo-eo-eo-v2-300m-tl-sen1.pt# noqa 运行此脚本的要求是: - 在 Python 环境中安装 [terratorch, albumentations, rasterio] - 在脚本 model 文件夹中下载模型权重 (直到将正确的 config.json 文件上传到 HF 前都将临时度量) - 下载输入示例图像 (India_900498_S2Hand.tif) 并将其放入 带有脚本的同一文件夹 (或用 -data_file 参数指定) 运行以下示例: python prithvi_geospatial_mae.py # noqa: E501 import argparse import datetime import os import re from typing import Union import albumentations import numpy as np import rasterio import torch from einops import rearrange from terratorch.datamodules import Sen1Floods11NonGeoDataModule from vllm import LLM NO_DATA -9999 NO_DATA_FLOAT 0.0001 OFFSET 0 PERCENTILE 99 model_config { architectures: [PrithviGeoSpatialMAE], num_classes: 0, pretrained_cfg: { task_args: { task: SemanticSegmentationTask, model_factory: EncoderDecoderFactory, loss: ce, ignore_index: -1, lr: 0.001, freeze_backbone: false, freeze_decoder: false, plot_on_val: 10, optimizer: AdamW, scheduler: CosineAnnealingLR }, model_args: { backbone_pretrained: false, backbone: prithvi_eo_v2_300_tl, decoder: UperNetDecoder, decoder_channels: 256, decoder_scale_modules: true, num_classes: 2, rescale: true, backbone_bands: [ BLUE, GREEN, RED, NIR_NARROW, SWIR_1, SWIR_2 ], head_dropout: 0.1, necks: [ { name: SelectIndices, indices: [ 5, 11, 17, 23 ] }, { name: ReshapeTokensToImage } ] }, optimizer_params : { lr: 5.0e-05, betas: [0.9, 0.999], eps: [1.0e-08], weight_decay: 0.05, amsgrad: false, maximize: false, capturable: false, differentiable: false }, scheduler_params : { T_max: 50, eta_min: 0, last_epoch: -1, verbose: deprecated } }, torch_dtype: float32 } # 临时为模型创建「config.json」文件。 # 当正确的 config.json 在 HF 平台可用后该文件将自动消失 with open(os.path.join(os.path.dirname(__file__), ./model/config.json), w) as config_file: config_file.write(model_config) datamodule_config { bands: [BLUE, GREEN, RED, NIR_NARROW, SWIR_1, SWIR_2], batch_size: 16, constant_scale: 0.0001, data_root: /dccstor/geofm-finetuning/datasets/sen1floods11, drop_last: True, no_data_replace: 0.0, no_label_replace: -1, num_workers: 8, test_transform: [ albumentations.Resize(always_applyFalse, height448, interpolation1, p1, width448), albumentations.pytorch.ToTensorV2(transpose_maskFalse, always_applyTrue, p1.0) ], } class PrithviMAE: def __init__(self): print(Initializing PrithviMAE model) self.model LLM(modelos.path.join(os.path.dirname(__file__), ./model), skip_tokenizer_initTrue, dtypefloat32) def run(self, input_data, location_coords): print(################ Running inference on vLLM ##############) # 合并数据到一个数据结构中 mm_data { pixel_values: torch.empty(0) if input_data is None else input_data, location_coords: torch.empty(0) if location_coords is None else location_coords } prompt {prompt_token_ids: [1], multi_modal_data: mm_data} outputs self.model.encode(prompt, use_tqdmFalse) print( ################ Inference done (it took seconds) ############## ) return outputs[0].outputs.data def generate_datamodule(): datamodule Sen1Floods11NonGeoDataModule( data_rootdatamodule_config[data_root], batch_sizedatamodule_config[batch_size], num_workersdatamodule_config[num_workers], bandsdatamodule_config[bands], drop_lastdatamodule_config[drop_last], test_transformdatamodule_config[test_transform ]) return datamodule def process_channel_group(orig_img, channels): 参数 orig_img表示原始图像参考图像的 torch.Tensor 形状为 (bands, H, W)。 channels表示 RGB 通道的索引列表。 返回 原始图像的 torch.Tensor形状为 (num_channels, height, width) orig_img orig_img[channels, ...] valid_mask torch.ones_like(orig_img, dtypetorch.bool) valid_mask[orig_img NO_DATA_FLOAT] False # 重缩放 (增强对比) max_value max(3000, np.percentile(orig_img[valid_mask], PERCENTILE)) min_value OFFSET orig_img torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1) # 0 作为无数据 orig_img[~valid_mask] 0 return orig_img def read_geotiff(file_path: str): Read all bands from *file_path* and return image meta info. Args: file_path: path to image file. Returns: np.ndarray with shape (bands, height, width) meta info dict with rasterio.open(file_path) as src: img src.read() meta src.meta try: coords src.lnglat() except Exception: # 无法读取 coords coords None return img, meta, coords def save_geotiff(image, output_path: str, meta: dict): 将多波段图像保存为 GeoTiff 文件。 参数 image: 形状为 (bands, height, width) 的 np.ndarray 数组 output_path: 图像保存路径 meta: 包含元信息的字典 with rasterio.open(output_path, w, **meta) as dest: for i in range(image.shape[0]): dest.write(image[i, :, :], i 1) return def _convert_np_uint8(float_image: torch.Tensor): image float_image.numpy() * 255.0 image image.astype(dtypenp.uint8) return image def load_example( file_paths: list[str], mean: list[float] None, std: list[float] None, indices: Union[list[int], None] None, ): 通过加载 *file_paths* 中的图像构建输入样本。 参数 file_paths: 文件路径列表 mean: 包含 *file_paths* 中各图像每个波段均值的列表 std: 包含 *file_paths* 中各图像每个波段标准差的列表 返回 生成的样本 np.array *file_paths* 中各图像的元信息列表 imgs [] metas [] temporal_coords [] location_coords [] for file in file_paths: img, meta, coords read_geotiff(file) # 重缩放(不要在空数据上归一化) img np.moveaxis(img, 0, -1) # channels last for rescaling # 最后一个通道用于重缩放 if indices is not None: img img[..., indices] if mean is not None and std is not None: img np.where(img NO_DATA, NO_DATA_FLOAT, (img - mean) / std) imgs.append(img) metas.append(meta) if coords is not None: location_coords.append(coords) try: match re.search(r(\d{7,8}T\d{6}), file) if match: year int(match.group(1)[:4]) julian_day match.group(1).split(T)[0][4:] if len(julian_day) 3: julian_day int(julian_day) else: julian_day datetime.datetime.strptime( julian_day, %m%d).timetuple().tm_yday temporal_coords.append([year, julian_day]) except Exception as e: print(fCould not extract timestamp for {file} ({e})) imgs np.stack(imgs, axis0) # num_frames, H, W, C imgs np.moveaxis(imgs, -1, 0).astype(float32) imgs np.expand_dims(imgs, axis0) # add batch di # 添加批 di return imgs, temporal_coords, location_coords, metas def run_model(input_data, temporal_coords, location_coords, model, datamodule, img_size, lightning_modelNone): # 当图像尺寸不能被 img_size 整除时进行反射填充 original_h, original_w input_data.shape[-2:] pad_h (img_size - (original_h % img_size)) % img_size pad_w (img_size - (original_w % img_size)) % img_size input_data np.pad(input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), modereflect) # 构建滑动窗口 batch_size 1 batch torch.tensor(input_data, devicecpu) windows (batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)) h1, w1 windows.shape[3:5] windows rearrange(windows, b c t h1 w1 h w - (b h1 w1) c t h w, himg_size, wimg_size) # 如果窗口数量大于批大小则分割批 num_batches windows.shape[0] // batch_size if windows.shape[ 0] batch_size else 1 windows torch.tensor_split(windows, num_batches, dim0) if torch.cuda.is_available(): device torch.device(cuda) else: device torch.device(cpu) if temporal_coords: temporal_coords torch.tensor(temporal_coords, devicedevice).unsqueeze(0) else: temporal_coords None if location_coords: location_coords torch.tensor(location_coords[0], devicedevice).unsqueeze(0) else: location_coords None # 运行模型 pred_imgs [] for x in windows: # Apply standardization # 应用标准化 x datamodule.test_transform( imagex.squeeze().numpy().transpose(1, 2, 0)) x datamodule.aug(x)[image] with torch.no_grad(): x x.to(device) pred model.run(x, location_coordslocation_coords) if lightning_model: pred_lightning lightning_model( x, temporal_coordstemporal_coords, location_coordslocation_coords) pred_lightning pred_lightning.output.detach().cpu() if not torch.equal(pred, pred_lightning): print(Inference output is not equal) y_hat pred.argmax(dim1) y_hat torch.nn.functional.interpolate(y_hat.unsqueeze(1).float(), sizeimg_size, modenearest) pred_imgs.append(y_hat) pred_imgs torch.concat(pred_imgs, dim0) # 从块中读取图像 pred_imgs rearrange( pred_imgs, (b h1 w1) c h w - b c (h1 h) (w1 w), himg_size, wimg_size, b1, c1, h1h1, w1w1, ) # 剪切填充区域还原原始大小 pred_imgs pred_imgs[..., :original_h, :original_w] # 挤压批大小 1 pred_imgs pred_imgs[0] return pred_imgs def main( data_file: str, output_dir: str, rgb_outputs: bool, input_indices: list[int] None, ): os.makedirs(output_dir, exist_okTrue) # 读取模型 --------------------------------------------------------------- model_obj PrithviMAE() datamodule generate_datamodule() img_size 256 # Size of Sen1Floods11 # 读取数据 --------------------------------------------------------------- input_data, temporal_coords, location_coords, meta_data load_example( file_paths[data_file], indicesinput_indices, ) meta_data meta_data[0] # 仅一张图像 if input_data.mean() 1: input_data input_data / 10000 # 转换到 0-1 之间 # 运行模型 --------------------------------------------------------------- channels [ datamodule_config[bands].index(b) for b in [RED, GREEN, BLUE] ] # BGR - RGB pred run_model(input_data, temporal_coords, location_coords, model_obj, datamodule, img_size) # 保存 pred meta_data.update(count1, dtypeuint8, compresslzw, nodata0) pred_file os.path.join( output_dir, fpred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff) save_geotiff(_convert_np_uint8(pred), pred_file, meta_data) # 保存 图像 和 pred meta_data.update(count3, dtypeuint8, compresslzw, nodata0) if input_data.mean() 1: input_data input_data * 10000 # Scale to 0-10000 # 缩放到 0-10000 rgb_orig process_channel_group( orig_imgtorch.Tensor(input_data[0, :, 0, ...]), channelschannels, ) pred[pred 0.] np.nan img_pred rgb_orig * 0.7 pred * 0.3 img_pred[img_pred.isnan()] rgb_orig[img_pred.isnan()] img_pred_file os.path.join( output_dir, frgb_pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff) save_geotiff( image_convert_np_uint8(img_pred), output_pathimg_pred_file, metameta_data, ) # 保存图片 rgb if rgb_outputs: rgb_file os.path.join( output_dir, original_rgb_ f{os.path.splitext(os.path.basename(data_file))[0]}.tiff) save_geotiff( image_convert_np_uint8(rgb_orig), output_pathrgb_file, metameta_data, ) if __name__ __main__: parser argparse.ArgumentParser(MAE run inference, add_helpFalse) parser.add_argument( --data_file, typestr, default./India_900498_S2Hand.tif, helpPath to the file., ) parser.add_argument( --output_dir, typestr, defaultoutput, helpPath to the directory where to save outputs., ) parser.add_argument( --input_indices, default[1, 2, 3, 8, 11, 12], typeint, nargs, help 0-based indices of the six Prithvi channels to be selected from the input. By default selects [1,2,3,8,11,12] for S2L1C data., ) parser.add_argument( --rgb_outputs, actionstore_true, helpIf present, output files will only contain RGB channels. Otherwise, all bands will be saved., ) args parser.parse_args() main(**vars(args))